What are you looking for?

Enter search term

We are sorry!

Unfortunately no results were found.

Login

U bent een nieuwe klant?

Registreer u en profiteer van vele voordelen:

Controle van de beschikbaarheid van het product
Snelle nabestelling & bestelhistorie
Persoonlijke productaanbevelingen
Betaling op rekening

Help & Contact

Neem contact op met HANSA-FLEX

Heeft u vragen over de online-shop of over onze producten?
U kunt onze klantenservice bereiken via:

Of maak gebruik van de FAQ

Hier vindt u antwoorden op de meest
gestelde vragen.

Helping people help themselves
Naar de FAQ

HK K3VL

Axial piston pump K3VL
Design
axial piston pump, swash plate 
Use
for open circuits in mobile and industrial applications 
Media
HL - HLP DIN 51524 Part 1/2 
Download PDF
Registreer u nu om onze online shop op te kunnen roepen.

Register now and access our complete product range and many exclusive services.

Characteristics

Design
  • axial piston pump, swash plate 
Use
  • for open circuits in mobile and industrial applications 
Media
  • HL - HLP DIN 51524 Part 1/2 
Viscosity
  • 15 to 100 cSt 
Customs tariff number
  • 84135061 
All characteristics

Productbeschrijving

Notes
If the pumps are to be used below the oil level, please contact us so that we can offer a version with a special paint finish and without a labelling sticker if necessary.
Description
Adjustment range of the pump controllers: 50 – 320 bar.
Pumps with variable delivery rate.
Low fluid pulsation.
Two different controller types.
Cylindrical shaft with key
Direction of rotation: clockwise rotating.

Product variants

10 Results
Show dimensional drawing
Identifier
VFU (cm³)
Min. speed (r/min)
Max. speed (r/min)
p2 max. (bar)
VFU = conveying volume per revolution
n = speed
p2 = working pressure
p3 = maximum pressure

Column selection

VFU (cm³)
Min. speed (r/min)
Max. speed (r/min)
p2 max. (bar)
p3 max. (bar)
Ø shaft (mm)
Pressure connection SAE
Suction connection SAE
Controller type
VFU = conveying volume per revolution
n = speed
p2 = working pressure
p3 = maximum pressure